LP 31 RÉSONANCE

Introduction

Le phénomène de résonance est caractérisé par un transfert d'énergie maximal entre un excitateur et un résonateur. Différentes grandeurs permettent de caractériser cette résonance comme la fréquence de résonance f_{res} , le facteur de qualité Q ou la bande passante Δf .

1 Caractérisation de la résonance dans un circuit RLC

1.1 Aspects théoriques

On considère le circuit RLC série représenté ci-contre.

Le circuit est alimenté par un GBF qui délivre une tension V(t). On prélève la tension $u(t) = R \times i(t)$ aux bornes de la résistance.

Le circuit est régi par l'équation différentielle suivante :

$$RC\frac{\mathrm{d}V}{\mathrm{d}t}(t) = u(t) + RC\frac{\mathrm{d}u}{\mathrm{d}t}(t) + LC\frac{\mathrm{d}^2u}{\mathrm{d}t^2}(t)$$

Ce qui est équivalent à écrire sa fonction de transfert $H(j\omega)$:

$$H(j\omega) = \frac{u(j\omega)}{V(j\omega)} = \frac{H_0}{1 + jQ\left(x - \frac{1}{x}\right)}$$

 $G_{dB}(j\omega)$

 $20\log(|K/Q_1|)$

avec :

- le gain statique $H_0 = 1$
- le facteur de qualité $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$
- la pulsation réduite $x = \frac{\omega}{\omega_0}$
- la pulsation propre $\omega_0 = \frac{1}{\sqrt{LC}}$

Le diagramme de Bode du système se présente sous la forme ci-contre :

- pente à +20 dB/dec pour $x \ll 1$
- pente à $-20 \text{ dB/dec pour } x \gg 1$
- gain maximal pour x = 1 avec :

$$G_{dB_{max}} = 20 \log H_0 = 0$$

Le facteur de qualité Q peut alors être relié à la bande passante $\Delta \omega$ et à la pulsation propre ω_0 par la relation :

$$Q = \frac{\omega_0}{\Delta\omega} = \frac{f_0}{\Delta f}$$

1.2 Mesures expérimentales

On utilise les valeurs numériques suivantes C = 20 nF, L = 200 mH, $R = 1 \text{ k}\Omega$.

1 Estimation des grandeurs théoriques $\omega_{0_{th}}$ et Q_{th} :

 $20\log(|K|)$

 \blacktriangleright Les valeurs théoriques de la pulsation propre ω_0 et du facteur de qualité Q sont données par les formules :

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 et $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$

• On peut déterminer l'incertitude sur les valeurs de ω_0 et Q théoriques :

$$\delta\omega_0 = \sqrt{\left(\frac{\partial\omega_0}{\partial C} dC\right)^2 + \left(\frac{\partial\omega_0}{\partial L} dL\right)^2} = \frac{1}{2} \sqrt{\frac{dC^2}{LC^3} + \frac{dL^2}{CL^3}} \text{ et } \delta Q = \sqrt{\left(\frac{-dR}{R^2} \sqrt{\frac{L}{C}}\right)^2 + \left(\frac{dL}{2R\sqrt{LC}}\right)^2 + \left(-\frac{\sqrt{L}dC}{2RC^{3/2}}\right)^2}$$

2 Mesure de la fréquence de résonance f_0 (ou pulsation de résonance ω_0) :

- On peut observer le signal avec le **mode** *XY* pour afficher *V*(*t*) en position *Y* et *u*(*t*) en position *X*. On obtient une ellipse. Au niveau de la résonance, à la pulsation propre ω_0 , l'ellipse s'aplatit car *i*(*t*) = $\frac{u(t)}{R}$ et *V*(*t*) sont en phase ($\Phi(j\omega_0) = 0$).
- On peut donc avoir une mesure précise de ω_0 :

3 Mesure de la bande passante $\Delta \omega$ et calcul du facteur de qualité Q :

En **temporel**, on peut mesurer le gain en décibels du signal de sortie et trouver la valeur limite pour laquelle $G_{dB}(\omega_1) = G_{dB_{max}} - 3 \text{ dB}$. On a alors $\omega_1 - \omega_0 = \frac{\Delta \omega}{2}$. On mesure donc :

• On remonte donc à la valeur du facteur de qualité $\frac{1}{O} = \frac{\Delta \omega}{\omega_0}$:

On peut donc confronter cette valeur avec la valeur théorique que l'on devrait obtenir avec la définition du facteur de qualité $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$.

L'incertitude δQ sur l'estimation du facteur de qualité $Q = \frac{\omega_0}{2(\omega_1 - \omega_0)}$ est donnée par la formule suivante :

$$\delta Q = \sqrt{\left(\frac{\partial Q}{\partial \omega_0}\right)^2 d\omega_0^2 + \left(\frac{\partial Q}{\partial \omega_1}\right)^2 d\omega_1^2} = \sqrt{\frac{\omega_1^2 d\omega_0^2 + \omega_0^2 d\omega_1^2}{4(\omega_1 - \omega_0)^4}}$$

2 Mise en résonance d'un diapason

2.1 Aspects théoriques

Lorsqu'un diapason est excité par un signal e(t) à une fréquence bien précise, aux alentours de 440 Hz il se met à osciller. Le diapason peut être modélisé par un filtre passe bande très sélectif de fonction de transfert :

$$\frac{\underline{\xi}}{\underline{e}} = \frac{\frac{\omega_0}{Q}j\omega}{\omega_0^2 - \omega^2 + \frac{\omega_0}{Q}j\omega}$$

On excite le diapason avec un champ magnétique de fréquence $\frac{f}{2}$ et on récupère $\xi(t)$ le signal de sortie d'un micro.

u(t)

2.2 Mesures expérimentales

1 Mesure de la pulsation propre ω_0 :

On observe la réponse impulsionnelle en régime libre. On récupère donc la fréquence propre f_0 du diapason en oscillations libres.

2 Estimation du facteur de qualité *Q* :

- Le diapason, en matériau paramagnétique, est sensible à de forts champs magnétiques. On place donc le **sommet** du diapason au voisinage d'un noyau de fer placé au coeur d'une bobine. Le diapason est sensible à l'énergie magnétique. On observe donc un doublement de fréquence $f = 2f_g$ lié au carré du champ magnétique.
- > On trace le diagramme de Bode du diapason, soumis à une fréquence f_g :

FIGURE 1 – Diagramme de Bode du diapason soumis à un champ magnétique sinusoïdal

• On mesure la bande passante $\Delta f = f_2 - f_1$. On la relie au facteur de qualité :

$$Q = \frac{f_0}{\Delta f} = \dots \pm \dots$$

L'incertitude δQ sur l'estimation du facteur de qualité $Q = \frac{f_0}{\Delta f}$ est donnée par la formule suivante :

$$\delta Q = \sqrt{\left(\frac{\partial Q}{\partial f_0}\right)^2 \mathrm{d}f_0^2 + \left(\frac{\partial Q}{\Delta f}\right)^2 \mathrm{d}\Delta f^2} = \sqrt{\left(\frac{1}{\Delta f}\right)^2 \mathrm{d}f_0^2 + \left(-\frac{f_0}{\Delta f^2}\right)^2 \mathrm{d}\Delta f^2}$$

3 Cavité de Fabry-Perrot

3.1 Aspects théoriques

Une cavité Fabry-Pérot confocale est formée de deux miroirs de rayon de courbure R, séparés de la distance L = R. À résonance, le déphasage de l'onde sur le trajet en 8 doit être un multiple de 2π , ce qui donne la condition de résonance suivante :

$$L_{cav} = 4L = k\lambda \text{ donc } f_k = \frac{kc}{L_{cav}} = \frac{kc}{4L}, k \in \mathbb{N}^*$$

LP 31

L'intervalle spectral libre IS L est l'écart en fréquence entre deux modes consécutifs pour une longueur de cavité $L_{cav} = 4L_0$ donnée, soit :

$$ISL = f_{k+1} - f_k = \frac{c}{L_{cav}} = \frac{c}{4L_0}$$

Ici on modifie la taille de la cavité avec un piezoélectrique de sorte que $L_{cav} = 4 \times (L_0 + \delta L) = 4 \times (L_0 + v \times \delta t)$. On a donc entre deux modes, pour une même fréquence f_0 de la radiation incidente :

$$f_{k+1,0} - f_{k,0} = \frac{c}{4L_0} - \frac{c}{4(L+v\Delta t)} \simeq \frac{c}{4L_0} - \frac{c}{4L_0} \left(1 - \frac{v\Delta t}{L_0}\right) = \frac{cv\Delta t}{4L_0^2} \equiv ISL$$

avec ISL l'intervalle spectral libre de la cavité analyseur de modes. Entre deux radiations d'un même mode mais de fréquences f_0 et f_1 , on a :

$$f_1 - f_0 \simeq \frac{c}{4L_0} - \frac{c}{4L_0} \left(1 - \frac{v\Delta t'}{L_0}\right) = \frac{cv\Delta t'}{4L_0^2}$$

On peut donc calculer les rapports des deux équations précédentes :

$$\frac{|f_1 - f_0|}{ISL} = \frac{\Delta t'}{\Delta t}$$

avec $|f_1 - f_0|_{th} = 685 \text{ MHz}$ l'intervalle spectral libre de la cavité du laser.

3.2 Mesures expérimentales

1 Mesure de Δt et $\Delta t'$:

 $\Delta t = \dots \pm \dots \pm s$ et $\Delta t' = \dots \pm \dots \pm s$

2 Calcul de l'intervalle spectral libre $|f_1 - f_0|$ de la cavité optique du laser :

avec ISL = 1,5 GHz l'intervalle spectral libre de la cavité d'analyse (valeur indiquée dans la documentation). L'incertitude de mesure étant donnée par la relation suivante :

$$\delta \Delta f = \sqrt{\left(\frac{IS\,L \times \delta(\Delta t')}{\Delta t}\right)^2 + \left(\frac{IS\,L \times \Delta t' \times \delta(\Delta t)}{\Delta t^2}\right)^2}$$

Conclusion

Ce montage permet de caractériser le phénomène de résonance à travers 3 grandeurs : le **facteur de qualité** Q, la **bande passante** Δf et la **fréquence de résonance** qui s'apparente ici à la fréquence propre f_0 . Plus le facteur de qualité du système est élevé, plus la plage de fréquence où le système résonne est étroite, ce qui permet d'entretenir des **oscillations très régulières**. En contrepartie, ces types de systèmes ont un **régime transitoire** d'autant plus long que leur facteur de qualité Q est élevé.

Remarques :

- La mesure de la résistance pour le circuit RLC doit inclure la résistance de la bobine.
- Les chiffres significatifs sont déterminés par la précision de la mesure (cf. digits sur le multimètre).
- Attention, la formule du 1.2.3. est fausse car le diagramme de Bode est symétrique par rapport à ω₀ mais que en logarithmique.
- La mesure du facteur de qualité du diapason peut être trouvée sur une descente si la montée ne marche pas...
- Cavité Fabry-Perrot : être bien clair dès le début (cf. rapport de David Vincent pour mettre en place le dispositif).

